
BITESIZE | Practical Applications of Causal AI with LLMs, with Robert Ness
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
Today’s clip is from episode 137 of the podcast, with Robert Ness.
Alex and Robert discuss the intersection of causal inference and deep learning, emphasizing the importance of understanding causal concepts in statistical modeling.
The discussion also covers the evolution of probabilistic machine learning, the role of inductive biases, and the potential of large language models in causal analysis, highlighting their ability to translate natural language into formal causal queries.
Get the full conversation here.
Attend Alex's tutorial at PyData Berlin: A Beginner's Guide to State Space Modeling
- Intro to Bayes Course (first 2 lessons free)
- Advanced Regression Course (first 2 lessons free)
Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!
Visit our Patreon page to unlock exclusive Bayesian swag ;)
Transcript
This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.