Aprendizaje Autosupervisado: La IA que Aprende Sola y la Revolución de los Modelos Fundacionales
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
Los extractos de las conferencias de Stanford y los comentarios de Yann LeCun ofrecen una visión general del campo del aprendizaje auto-supervisado (SSL), un paradigma emergente en la inteligencia artificial. Las fuentes explican que el SSL permite entrenar modelos de deep learning a gran escala utilizando datos no etiquetados, lo que aborda la limitación de la necesidad de grandes conjuntos de datos etiquetados en el aprendizaje supervisado tradicional. Discuten cómo el SSL funciona a través de la definición de una tarea pretexto donde la supervisión se genera automáticamente a partir de los datos de entrada, como predecir partes faltantes de una imagen (como en Masked Autoencoders) o reordenar parches (el rompecabezas de Jigsaw). Además, se presenta el concepto de aprendizaje contrastivo, que entrena modelos para generar representaciones similares para las diferentes vistas del mismo objeto (pares positivos) y representaciones disímiles para diferentes objetos (pares negativos). Una vez que el modelo ha sido preentrenado con estas tareas, sus representaciones pueden transferirse a una tarea posterior más específica (como clasificación o detección) con muchos menos datos etiquetados, utilizando técnicas como el ajuste fino o el sondaje lineal.
