Deep Learning with PyTorch Titelbild

Deep Learning with PyTorch

Build, Train, and Tune Neural Networks Using Python Tools

Reinhören
Zeitlich begrenztes Angebot

3 Monate kostenlos
0,00 € - kostenlos hören
Angebot endet am 31. Juli 2025 um 23:59 Uhr. Es gelten die Audible Nutzungsbedingungen
Aktiviere das befristete Angebot, mit der Option, monatlich flexibel zu pausieren oder zu kündigen.
Nach 3 Monaten bekommst du eine vielfältige Auswahl an Hörbüchern, Kinderhörspielen und Original Podcasts für 9,95 € pro Monat.
Wähle monatlich einen Titel aus dem Gesamtkatalog und behalte ihn.

Deep Learning with PyTorch

Von: Eli Stevens, Luca Antiga, Thomas Viehmann
Gesprochen von: Mark Thomas
0,00 € - kostenlos hören

9,95 € pro Monat nach 3 Monaten. Angebot endet am 31. Juli 2025 um 23:59 Uhr. Monatlich kündbar.

Für 25,95 € kaufen

Für 25,95 € kaufen

Jetzt kaufen
Kauf durchführen mit: Zahlungsmittel endet auf
Bei Abschluss deiner Bestellung erklärst du dich mit unseren AGB einverstanden. Bitte lese auch unsere Datenschutzerklärung und unsere Erklärungen zu Cookies und zu Internetwerbung.
Abbrechen

Über diesen Titel

There are countless ways to put deep learning to good use: improved medical imaging, credit card fraud detection, long range weather forecasting. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you - and your deep-learning skills - become more sophisticated.

This book will make that journey engaging and fun.

About the technology

Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It's excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it's a great skill to have as you expand your career options.

About the book

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results.

After covering the basics, the book will take you on a journey through larger projects.

What's inside

  • Training deep neural networks
  • Implementing modules and loss functions
  • Utilizing pretrained models from PyTorch Hub
  • Exploring code samples in Jupyter Notebooks

About the audience

For Python programmers with an interest in machine learning

About the authors

Eli Stevens had roles from software engineer to CTO and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant.

PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.

©2020 Manning Publications (P)2021 Manning Publications
Programmieren & Softwareentwicklung

Diese Titel könnten dich auch interessieren

Deep Learning with Python (Second Edition) Titelbild
AI and Machine Learning for Coders Titelbild
Designing Data-Intensive Applications Titelbild
JavaScript (7th Edition) Titelbild
Data Pipelines with Apache Airflow Titelbild
The Master Algorithm Titelbild
Grokking Machine Learning Titelbild
Fundamentals of Data Engineering Titelbild
Software Architecture: The Hard Parts Titelbild
Math for Programmers Titelbild
Clean Code Titelbild
Data Mesh Titelbild
Fundamentals of Software Architecture Titelbild

Das sagen andere Hörer zu Deep Learning with PyTorch

Nur Nutzer, die den Titel gehört haben, können Rezensionen abgeben.

Rezensionen - mit Klick auf einen der beiden Reiter können Sie die Quelle der Rezensionen bestimmen.