AI Engineering
Building Applications with Foundation Models
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
Nur 0,99 € pro Monat für die ersten 3 Monate
Bist du Amazon Prime-Mitglied?Audible 60 Tage kostenlos testen
Für 21,95 € kaufen
-
Gesprochen von:
-
Edelyn Okano
-
Von:
-
Chip Huyen
Über diesen Titel
Recent breakthroughs in AI have not only increased demand for AI products, they've also lowered the barriers to entry for those who want to build AI products. The model-as-a-service approach has transformed AI from an esoteric discipline into a powerful development tool that anyone can use. Everyone, including those with minimal or no prior AI experience, can now leverage AI models to build applications. In this book, author Chip Huyen discusses AI engineering: the process of building applications with readily available foundation models.
The book starts with an overview of AI engineering, explaining how it differs from traditional ML engineering and discussing the new AI stack. The more AI is used, the more opportunities there are for catastrophic failures, and therefore, the more important evaluation becomes. This book discusses different approaches to evaluating open-ended models, including the rapidly growing AI-as-a-judge approach.
AI application developers will discover how to navigate the AI landscape, including models, datasets, evaluation benchmarks, and the seemingly infinite number of use cases and application patterns. You'll learn a framework for developing an AI application, starting with simple techniques and progressing toward more sophisticated methods, and discover how to efficiently deploy these applications.
reader performance is awful,
Ein Fehler ist aufgetreten. Bitte versuche es in ein paar Minuten noch einmal.
However, I can hardly listen to it for more than 20 minutes at a time, as it has the most monotonous speaker I have ever heard. There are also multiple errors that show a lack of quality control, like calling an autoregressive language model a „casual“ model instead of a causal model. Ironically, any current generation text-to-speech AI model would likely have done a better job.
I would still recommend it for the content though.
Great content, but irritating speaker
Ein Fehler ist aufgetreten. Bitte versuche es in ein paar Minuten noch einmal.
