S1E7: Segmentation
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
This episode delves into image segmentation, a foundational computer vision task that teaches machines to understand the visual world at a pixel level, moving beyond simple classification or bounding boxes. We explore the critical distinctions within this field: semantic segmentation, which assigns a class label to every pixel to understand broad regions like "road" or "sky", and instance segmentation, which goes a step further by identifying and precisely outlining each individual object within a class, such as "car 1" versus "car 2". We'll uncover two canonical deep learning architectures that power these capabilities: U-Net, known for its U-shaped encoder-decoder design and crucial skip connections that enable precise boundary localization, particularly in medical imaging applications despite limited data; and Mask R-CNN, a powerful framework that extends object detection to generate pixel-perfect masks for every instance by leveraging a two-stage "detect-then-segment" approach and innovations like ROIAlign. Finally, we'll see how these converge in panoptic segmentation for a truly comprehensive scene understanding, enabling transformative applications from autonomous vehicles and medical diagnostics to automated retail and robotics.
see:
https://tinyurl.com/SM-S1E7-1
https://tinyurl.com/SM-S1E7-2
