S1E04. Untangling the Web: How to Overcome Hidden Bias in Data
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
Season 1: The Book of Why
Not all correlations are what they seem. Hidden biases, lurking variables, and confounding factors can distort our understanding of cause and effect—leading to flawed conclusions in science, medicine, and everyday decision-making. In this episode, we uncover the challenge of confounding and how controlled experiments, causal diagrams, and statistical techniques help us separate real causation from misleading associations. From biblical experiments to modern-day clinical trials, we explore the evolution of methods designed to "deconfound" our reasoning.
How do we avoid false conclusions? Can we make valid causal claims from observational data? And what does this mean for AI systems trying to make sense of the world?
Join us as we tackle one of the biggest hurdles in causal inference and reveal how we can truly "see" cause and effect.
🔍 Stay Connected
📧 Email: amir.rafe@usu.edu
🌐 Website: https://pozapas.github.io/
🔗 LinkedIn: https://www.linkedin.com/in/amir-rafe-08770854/
🐦 X: https://x.com/rafeamir
