RAG & Reference-Free Evaluation: Scaling LLM Quality Without Ground Truth
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
In this episode of Memriq Inference Digest - Leadership Edition, we explore how Retrieval-Augmented Generation (RAG) systems maintain quality and trust at scale through advanced evaluation methods. Join Morgan, Casey, and special guest Keith Bourne as they unpack the game-changing RAGAS framework and the emerging practice of reference-free evaluation that enables AI to self-verify without costly human labeling.
In this episode:
- Understand the limitations of traditional evaluation metrics and why RAG demands new approaches
- Discover how RAGAS breaks down AI answers into atomic fact checks using large language models
- Hear insights from Keith Bourne’s interview with Shahul Es, co-founder of RAGAS
- Compare popular evaluation tools: RAGAS, DeepEval, and TruLens, and learn when to use each
- Explore real-world enterprise adoption and integration strategies
- Discuss challenges like LLM bias, domain expertise gaps, and multi-hop reasoning evaluation
Key tools and technologies mentioned:
- RAGAS (Retrieval Augmented Generation Assessment System)
- DeepEval
- TruLens
- LangSmith
- LlamaIndex
- LangFuse
- Arize Phoenix
Timestamps:
0:00 - Introduction and episode overview
2:30 - What is Retrieval-Augmented Generation (RAG)?
5:15 - Why traditional metrics fall short for RAG evaluation
7:45 - RAGAS framework and reference-free evaluation explained
11:00 - Interview highlights with Shahul Es, CTO of RAGAS
13:30 - Comparing RAGAS, DeepEval, and TruLens tools
16:00 - Enterprise use cases and integration patterns
18:30 - Challenges and limitations of LLM self-evaluation
20:00 - Closing thoughts and next steps
Resources:
- "Unlocking Data with Generative AI and RAG" by Keith Bourne - Search for 'Keith Bourne' on Amazon and grab the 2nd edition
- Visit Memriq AI at https://Memriq.ai for more AI engineering deep-dives, guides, and research breakdowns
Thanks for tuning in to Memriq AI Inference Digest - Leadership Edition. Stay ahead in AI leadership by integrating continuous evaluation into your AI product strategy.
