DL - EP 05 : डीप लर्निंग बनाम मशीन लर्निंग: एक तुलना
Artikel konnten nicht hinzugefügt werden
Leider können wir den Artikel nicht hinzufügen, da Ihr Warenkorb bereits seine Kapazität erreicht hat.
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Bitte versuchen Sie es später noch einmal
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
Bitte versuchen Sie es später noch einmal
„Von Wunschzettel entfernen“ fehlgeschlagen.
Bitte versuchen Sie es später noch einmal
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
डीप लर्निंग (DL) और ट्रेडिशनल मशीन लर्निंग (ML) के बीच अंतर को स्पष्ट करता है, जो आर्टिफिशियल इंटेलिजेंस (AI) के दो महत्वपूर्ण पहलू हैं। इसमें बताया गया है कि जहाँ ट्रेडिशनल ML को मैनुअल फीचर इंजीनियरिंग की आवश्यकता होती है और यह छोटे, संरचित डेटासेट के साथ अच्छा काम करता है, वहीं डीप लर्निंग न्यूरल नेटवर्क के माध्यम से स्वचालित फीचर निष्कर्षण का उपयोग करता है और बड़े, असंरचित डेटासेट के लिए अधिक उपयुक्त है। लेख दोनों दृष्टिकोणों की विशेषताओं, डेटा आवश्यकताओं, कम्प्यूटेशनल शक्ति और विशिष्ट अनुप्रयोगों की तुलना करता है, जैसे कि ट्रेडिशनल ML का उपयोग धोखाधड़ी का पता लगाने में और DL का उपयोग छवि पहचान में। यह उनके संबंधित चुनौतियों पर भी चर्चा करता है, जैसे ट्रेडिशनल ML के लिए मॉडल चयन और DL के लिए इसकी ब्लैक बॉक्स प्रकृति।
Noch keine Rezensionen vorhanden
