Creating Scalable Automations With Your Data
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
-
Gesprochen von:
-
Von:
Über diesen Titel
🎙️ Why Point-to-Point Automation Is Broken—and What to Do Instead | Data Fuel Podcast
🔔 Subscribe for smarter systems, cleaner data & automation that actually scales
📢 Your Zaps and automations are breaking—and it’s not your fault. Tools like Zapier and Make are powerful, but when used in point-to-point setups, they create fragile, error-prone spaghetti systems. In this episode of Data Fuel, we break down:
✔️ Why point-to-point automation falls apart at scale
✔️ How a centralized data warehouse solves 80% of your issues
✔️ Step-by-step plan to reroute your automations through a warehouse
✔️ Real-world use cases and tools to get started
⏱️ Chapters
00:00 – The Problem with Point-to-Point Automation (Zapier, Make, Airtable, etc.)
01:30 – How a Centralized Data Warehouse Becomes Your Automation Hub
02:10 – The Hub-and-Spoke Model: Replace Chaos with Clean Data
03:00 – Benefits: Data Normalization, Less Reliance on Fragile APIs
05:20 – Data Modeling 101: Linking IDs Across Tools (HubSpot, Billing, PM)
06:00 – Why You Should Push from Warehouse to Apps (Not the Other Way Around)
06:45 – Automation Use Case 1: Invoicing from a Ready-to-Bill Table
07:30 – Automation Use Case 2: Weekly Reporting Without Breaks
08:25 – Getting Started: The 80/20 Rule for Automation Refactoring
09:35 – Final Thoughts: Automate Smarter, Not Harder
✅ Key Takeaways
✔️ Point-to-point automations break when data or tools change—even slightly
✔️ A centralized data warehouse (Snowflake, BigQuery, Postgres) creates structure and trust
✔️ Run automations from your warehouse using Zapier or Make, not directly from source tools
✔️ Fix 80% of your problems by starting with one high-friction automation
✔️ Warehouse-driven automation = better data integrity, scalability, and maintainability
💡 Tools Mentioned:
- Zapier / Make
- Snowflake, BigQuery, Postgres
- Stitch, Fivetran, Airbyte
🔔 Like & Subscribe to Data Fuel for weekly episodes on systems thinking, ops automation, and scalable tech stacks.
Connect with us!
Website
LinkedIn
