
A Simple Guide to Retrieval Augmented Generation
Artikel konnten nicht hinzugefügt werden
Der Titel konnte nicht zum Warenkorb hinzugefügt werden.
Der Titel konnte nicht zum Merkzettel hinzugefügt werden.
„Von Wunschzettel entfernen“ fehlgeschlagen.
„Podcast folgen“ fehlgeschlagen
„Podcast nicht mehr folgen“ fehlgeschlagen
3 Monate kostenlos
Für 20,95 € kaufen
Sie haben kein Standardzahlungsmittel hinterlegt
Es tut uns leid, das von Ihnen gewählte Produkt kann leider nicht mit dem gewählten Zahlungsmittel bestellt werden.
-
Gesprochen von:
-
Christopher Kendrick
-
Von:
-
Abhinav Kimothi
Über diesen Titel
Everything you need to know about Retrieval Augmented Generation in one human-friendly guide.
Augmented Generation (or RAG) enhances an LLM’s available data by adding context from an external knowledge base, so it can answer accurately about proprietary content, recent information, and even live conversations. RAG is powerful, and with A Simple Guide to Retrieval Augmented Generation, it’s also easy to understand and implement!
In A Simple Guide to Retrieval Augmented Generation you’ll learn:
The components of a RAG system
How to create a RAG knowledge base
The indexing and generation pipeline
Evaluating a RAG system
Advanced RAG strategies
RAG tools, technologies, and frameworks
A Simple Guide to Retrieval Augmented Generation gives an easy, yet comprehensive, introduction to RAG for AI beginners. You’ll go from basic RAG that uses indexing and generation pipelines, to modular RAG and multimodal data from images, spreadsheets, and more.
About the Book
A Simple Guide to Retrieval Augmented Generation is a plain-English guide to RAG. The book is easy to follow and packed with realistic Python code examples. It takes you concept-by-concept from your first steps with RAG to advanced approaches, exploring how tools like LangChain and Python libraries make RAG easy. And to make sure you really understand how RAG works, you’ll build a complete system yourself, even if you’re new to AI!
About the Author
Abhinav Kimothi is a seasoned data and AI professional. He has spent over 15 years in consulting and leadership roles in data science, machine learning and AI, and currently works as a Director of Data Science at Sigmoid.
PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.
©2025 Manning Publications (P)2025 Manning Publications